

OPTIDRIVE™ CP2

AC Variable Speed Drive

Powerful Performance

Advanced motor control

0.75kW-250kW / 1HP-400HP **200-600V** Single & 3 Phase Input

Powerful Performance

World leading control for the latest generation of permanent magnet and standard induction motors

150% overload for 60 seconds

Advanced Motor Control

Optidrive P2 has been uniquely developed to allow a wide range of different motor types to be used, with only parameter changes being required. This technology allows the same drive to be used in a wide range of applications, allowing OEMs and end user alike to take advantage of the energy saving provided by using the latest motor technologies.

AC Induction Motors

The majority of AC motors in use today around the world are standard induction motors. These motors are relatively low cost, readily available and provide good performance with long service life. With the ever increasing focus on energy efficiency, motor manufacturers have refined and improved their designs in recent years.

Optidrive P2 has been developed to provide optimum control and maximum efficiency when operating with older motors designs, or newer high efficiency designs.

Operation can be in simple V/F control mode or in High Performance Third Generation Vector Mode, which provides up to 200% torque from zero speed without requiring an encoder.

Permanent Magnet AC Motors

Permanent magnet AC motors provide improved efficiency compared to standard induction motors. Using permanent magnets in the motor construction eliminates the need for any magnetising current, reducing electrical losses. PM motors have been used for many years in high performance applications, however this has always required the use of a feedback device, such as a resolver or encoder. Optidrive P2 has been designed to operate with AC PM motors without requiring any feedback device, allowing them to be used for their energy efficiency benefits without incurring extra cost and complexity in applications which do not require position feedback.

Brushless DC Motors

BLDC motors are similar to AC PM motors, however the design requires a slightly different control method to optimise the performance. Optidrive P2 has the flexibility to control this type of motor, requiring only simple parameter changes. This provides much greater flexibility for OEMs, allowing Optidrive P2 to be used in a variety of applications, with various motor types.

Synchronous Reluctance Motors

Synchronous Reluctance Motors (SynRM), not to be confused with Switched Reluctance Motors, share a similar stator construction to standard induction motors, however the rotor is substantially different, in order to improve the overall efficiency of the motor. SynRM motors are ideally suited to variable torque applications.

Optidrive P2 can control synchronous reluctance motors, allowing the energy saving benefits to be realised.

At a Glance...

High performance, excellent usability and flexible to meet the needs of your application

OPTIDRIVE™ CP2

Applications

High performance, accurate motor control for even the most demanding of applications

Mining & Quarrying

- Feed conveyers
- Crushers
- Cranes

Metals & Processing

- Grinding
- Cutting
- Polishing
- Drilling
- Rolling

Rubber & Plastics

- Extruders
- Moulding
- Mixers
- Winding

Food & Beverage

- Conveyers
- Pumps
- Mixers
- Palletisers

Powerful, versatile and easy to use

Cranes

Requirements:

- High starting torque
- Smooth motor operation throughout starting and stopping phases
- Motor holding brake control
- Avoidance of load droop and sag
- Regeneration and braking capability during load lowering

Optidrive P2 provides:

- Dedicated Hoist Mode Operation with motor holding brake control algorithm
- Up to 200% torque from zero speed in vector operation without encoder feedback
- Multiple Preset Speed or variable speed operation
- Built in dynamic braking transistor, requires only an external resistor

Compressors

Requirements:

- Precise regulation of speed to ensure a consistent end product
- High starting torque demand in many applications
- Maximum efficiency under all conditions
- Safe operation to prevent accidents and injuries

Optidrive P2 Provides:

- PM Motor control mode to allows open loop operation with Permanent Magnet motors for maximum efficiency
- Maximum starting torque with standard AC motors
- Better than 0.5% speed holding accuracy in Open Loop Vector Operation
- Dedicated Safe Torque Off input complies with EN62061 SIL Level 2 for safe operation

Winding

Requirements:

- Precise control of motor torque over a broad speed range
- Accurate control of material tension under all conditions
- Open or closed loop control capability, based on tension feedback or winding diameter
- Web break protection in case of material breakage

Optidrive P2 Provides:

- PID Closed Loop Tension Control with feedback from a load cell or dancer
- Open Loop Vector control provides optimum control of the output torque level
- Encoder feedback option allows for a very wide speed range, even down to zero speed
- Safe Torque Off input immediately disables the drive in Emergency conditions

Options & Accessories

Installation options, plug-in modules and commissioning tools

Plug-in Options Fieldbus Interfaces

Modbus RTU and CANopen on board as standard

For additional communication interfaces or functionality a range of plug-in modules is available:

Profibus DP OPT-2-PROFB-IN

DeviceNet OPT-2-DEVNT-IN

Ethernet IP OPT-2-ETHNT-IN

Modbus TCP OPT-2-MODIP-IN

Profinet OPT-2-PFNET-IN

EtherCat OPT-2-ETCAT-IN

Encoder Feedback

OPT-2-ENCOD-IN (5 Volt) OPT-2-ENCHT-IN (15 – 30 Volt)

Closed loop encoder feedback, compatible with a wide range of incremental encoders

Extended I/O

OPT-2-EXTIO-IN

- Additional 3 Digital Inputs
- Additional Relay Output

Extended Relay

OPT-2-CASCD-IN

Additional 3 Relay Outputs:

Relay 3 - Drive Healthy Indication

Relay 4 – Drive Fault Indication
Relay 5 – Drive Running Indication

Functions are programmable / adjustable

Installation & Peripheral Options

A range of external EMC Filters, Brake Resistors, Input Chokes and Output Filters are available, to suit all installation requirements

Optistick Smart

Rapid Commissioning Tool

- Allows copying, backup and restore of drive parameters
- Provides Bluetooth interface to a PC running OptiTools Studio or the OptiTools Mobile app on a smartphone
- Onboard NFC (Near Field Communication) for rapid data transfer

OPT-3-STICK-IN

Powerful PC Software

Drive commissioning and parameter backup

- Real-time parameter editing
- Drive network communication
- Parameter upload, download and storage
- Simple PLC function programming
- Real-time scope function and data logging
- Real-time data monitoring

Compatible with:

Windows Vista Windows 7 Windows 8 Windows 8.1 Windows 10

OPTIDRIVE™ ⟨P²

Replace # in model code with enclosure/display option

100-2019 1						*	% % %	å	enclosure/display option					
200-240V 1 (0) 1.5 7		kW	Amps	Frame Size	_	Podestone State of St		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cabinet	TFT	Non		Non	
200-240/4 [0%] 1								ſ						
1 1 1 1 1 1 1 1 1 1	200-240V+10%			_										
0.75			_	_										
1.5 7 2 2 200 2.2 2 20.3 3 6 4 2 2 2 2 2 2 2 2 2		2.2	10.5	2	L	ODP - 2 - 2 2 22	20 - 1 K F	4 #	2-MN		X-TN	Y-TN	A-MN	B-MN
2 10.5 2 0.0 2 2 2 2 2 2 2 2 3 5 5 2 4 3 5 5 2 4 3 5 5 2 4 3 5 5 2 4 3 5 5 2 4 3 5 5 2 4 4 6 7 7 7 7 7 7 7 7 7		0.75	4.3	2		ODP - 2 - 2 2 07	75 - 3 K F	4 #	2-MN		X-TN	Y-TN	A-MN	B-MN
A 18 3		1.5	7	2		ODP - 2 - 2 2 15	50 - 3 K F	4 #	2-MN		X-TN	Y-TN	A-MN	B-MN
S.5. 24 3		2.2	10.5	2		ODP - 2 - 2 2 22	20 - 3 K F	4 #	2-MN		X-TN	Y-TN		B-MN
5.5 2.4 4											X-TN	Y-TN		
7.5 30		_		_					2-MN				A-MN	B-MN
1		_		_					2 4451				A 14N1	D AANI
15		_		_										
200_94 0y 100_05		_		_									717111	Diviit
3 Phose Input	200-240V+10%	_	_	_										
30 110 6 00P - 2 - 6 2 030 - 3 E 4 2														
30 110 6A OPP - 2 - 2 - 2 O20 - 3 E 4 E 2MN N.MN		22	90	6A		ODP - 2 - 6 2 02	22 - 3 K F	4 #	2-MN					
37 150 68 ODP - 2 - 6 2 037 - 3 K 4 2,4MN		30	110	6		ODP - 2 - 6 2 03	30 - 3 K F	4 #		N-MN				
37 150 66 ODP 2 - 0 2 0 207 - 3 K E 4 ZMN				_					2-MN					
45 180 6 6 COP - 2 - 6 2 045 - 3 K 6 4 2 2 2 2 2 7 COP - 2 - 6 2 045 - 3 K 6 4 2 2 2 2 2 COP - 2 - 6 2 045 - 3 K 6 4 2 2 2 2 COP - 2 - 7 2 055 - 3 K 6 4 2 2 2 2 COP - 2 - 7 2 055 - 3 K 6 4 2 2 2 2 2 2 2 2 2			_	_						N-MN				
A5 180 68 ODP - 2 - 6 2 O45 - 3 K F 4									2-MN					
55 202 7 ODP - 2 - 7 2 055 - 3 K F F F N.M.N		_		_					2 4451	N-MN				
7.5 248 7		_							2-MIN	NI AANI				
0.75 2.2 2 ODP - 2 - 2 4 075 - 3 K 4 F 2.MN					Н									
1.5				_						1 4-14/11				
2.2 5.8 2 ODP - 2 - 2 4 200 - 3 K 6 4 2 2.MN		_		_										
A		_												
S.5		_		_										
7.5 18 3 ODP - 2 - 3 4 075 - 3 K E 4 2 2 MN XTN YTN A MN B MN A MN B MN A MN B MN B MN A MN B MN		_		_										
11		_		_										
11			_	_							,,,,,			
18.5 39 4 ODP - 2 - 4 4 185 - 3 K E 4 E 2.MN NMN AMN BMN		11	24	4						N-MN				
22 46 4 4 ODP - 2 - 4 4 220 - 3 K E 4 E 2-MN N-MN A-MN B-MN B-MN B-MN B-MN B-MN B-MN B-MN B		15	30	4		ODP - 2 - 4 4 15	50 - 3 K F	4 #	2-MN	N-MN			A-MN	B-MN
30 61 5 ODP - 2 · 5 4 300 · 3 K F 4 F 2 · 4M N · MM 380 - 480V ± 10% 37 72 5 ODP - 2 · 5 4 370 · 3 K F 4 F 2 · 4M N · MM 45 90 6A ODP - 2 · 6 4 045 · 3 K F 4 F 2 · 4M N · MM 45 90 6A ODP - 2 · 6 4 045 · 3 K F 4 F 2 · 4M N · MM 55 110 6A ODP - 2 · 6 4 055 · 3 K F 4 F 2 · 4M N · MM 55 110 6A ODP - 2 · 6 4 055 · 3 K F 4 F 2 · 4M N · MM 75 150 6B ODP - 2 · 6 4 055 · 3 K F 4 F 2 · 4M N · MM 75 150 6B ODP - 2 · 6 4 055 · 3 K F 4 F 2 · 4M N · MM 90 180 6B ODP - 2 · 6 4 090 · 3 K F 4 F 2 · 4M N · MM 110 202 6B ODP - 2 · 6 4 090 · 3 K F 4 F 2 · 4M N · MM 110 202 7 ODP - 2 · 6 4 090 · 3 K F 4 F 2 · 4M N · MM 110 202 7 ODP - 2 · 6 4 090 · 3 K F 4 F 2 · 4M N · MM 120 370 8 ODP - 2 · 7 4 110 · 3 K F 4 F 2 · 4M N · MM 200 370 8 ODP - 2 · 7 4 110 · 3 K F 4 F 2 · 4M N · MM 200 370 8 ODP - 2 · 8 4 250 · 3 K F 4 F 2 · 4M N · MM 200 370 8 ODP - 2 · 8 4 250 · 3 K F 4 F 2 · 4M N · MM 3 Phase Input 1 130 255 7 ODP - 2 · 7 5 150 · 3 K 6 4 F 2 · 4 · 4 · 4 · 4 · 4 · 4 · 4 · 4 · 4 ·		18.5	39	4		ODP - 2 - 4 4 18	35 - 3 K F	4 #	2-MN	N-MN			A-MN	B-MN
380-480V±10% 3 Phase Input 45 90 6 46 0DP 2 - 6 4 055 - 3 K F 4 # 2-MN N-MN N-		_		_									A-MN	B-MN
380-480V±10% 3 Phase Input 45 90 6A 55 110 6A CDP - 2 · 6 4 045 · 3 K F 4 # CMN S5 110 6A CDP - 2 · 6 4 055 · 3 K F 4 # CMN S5 110 6A CDP - 2 · 6 4 055 · 3 K F 4 # CMN S5 110 6A CDP - 2 · 6 4 055 · 3 K F 4 # CMN S5 110 6A CDP - 2 · 6 4 075 · 3 K F 4 # CMN SMM SMM SMM SMM SMM SMM SMM SMM SMM S														
A5	380-480V±10%	_		_					2-MN					
S5 110 6 ODP - 2 - 6 4 055 - 3 K 6 4 7 2-MN	3 Phase Input	_							2-MNI	14-1/114				
S5 110 6A COPP - 2 - 6 4 055 - 3 K F 4 F COPP - 2 - 6 4 075 - 3 K F 4 F COPP - 2 - 6 4 075 - 3 K F 4 F COPP - 2 - 6 4 075 - 3 K F 4 F COPP - 2 - 6 4 075 - 3 K F 4 F COPP - 2 - 6 4 075 - 3 K F 4 F COPP - 2 - 6 4 075 - 3 K F 4 F COPP - 2 - 6 4 075 - 3 K F 4 F COPP - 2 - 6 4 075 - 3 K F 4 F COPP - 2 - 6 4 075 - 3 K F 4 F COPP - 2 - 6 4 075 - 3 K F 4 F COPP - 2 - 6 4 075 - 3 K F 4 F COPP - 2 - 6 4 075 - 3 K F 4 F COPP - 2 - 7 4 110 - 3 K F 4 F COPP - 2 - 7 4 110 - 3 K F 4 F COPP - 2 - 7 4 110 - 3 K F 4 F COPP - 2 - 7 4 110 - 3 K F 4 F COPP - 2 - 7 4 110 - 3 K F 4 F COPP - 2 - 7 4 110 - 3 K F 4 F COPP - 2 - 7 4 110 - 3 K F 4 F COPP - 2 - 7 4 110 - 3 K F 4 F COPP - 2 - 7 4 110 - 3 K F 4 F COPP - 2 - 7 4 110 - 3 K F 4 F COPP - 2 - 7 4 110 - 3 K F 4 F COPP - 2 - 7 4 110 - 3 K F 4 F COPP - 2 - 7 4 110 - 3 K F 4 F COPP - 2 - 7 4 110 - 3 K F 4 F COPP - 2 - 7 5 110 - 3 K F 4 F		_		_					27111	N-MN				
75 150 6 ODP - 2 - 6 4 075 - 3 K F 4 # 2.MN 75 150 6B ODP - 2 - 6 4 075 - 3 K F 4 # 2.MN 90 180 6B ODP - 2 - 6 4 090 - 3 K F 4 # 2.MN 90 180 6B ODP - 2 - 6 4 090 - 3 K F 4 # 2.MN 110 202 6B ODP - 2 - 6 4 110 - 3 K F 4 # 2.MN 110 202 7 ODP - 2 - 7 4 110 - 3 K F 4 # 2.MN 132 240 7 ODP - 2 - 7 4 132 - 3 K F 4 # 3.MN 160 302 7 ODP - 2 - 7 4 132 - 3 K F 4 # 3.MN 200 370 8 ODP - 2 - 8 4 200 - 3 K F 4 # 2.MN 200 370 8 ODP - 2 - 8 4 250 - 3 K F 4 # 3.MN 250 480 8 ODP - 2 - 8 4 250 - 3 K F 4 # 3.MN 3 Phase Input 1 150 205 7 ODP - 2 - 7 5 132 - 3 K 0 4 # 3.MN 3 Phase Input 2 2.MN 150 205 7 ODP - 2 - 7 5 150 - 3 K 0 4 # 3.MN 150 205 7 ODP - 2 - 7 5 150 - 3 K 0 4 # 3.MN 150 205 7 ODP - 2 - 7 5 150 - 3 K 0 4 # 3.MN 150 205 7 ODP - 2 - 7 5 150 - 3 K 0 4 # 3.MN 150 205 7 ODP - 2 - 7 5 150 - 3 K 0 4 # 3.MN 150 205 7 ODP - 2 - 7 5 150 - 3 K 0 4 # 3.MN 160 205 7 ODP - 2 - 7 5 150 - 3 K 0 4 # 3.MN 170 200 275 7 ODP - 2 - 2 6 075 - 3 K 0 4 # 3.MN 18.5 25 4 10 ODP - 2 - 2 6 150 - 3 K 0 4 # 3.MN 190 20 275 1 2 ODP - 2 - 2 6 150 - 3 K 0 4 # 3.MN 100 20 20 20 20 20 20 20 20 20 20 20 20 2				_					2-MN					
90 180 6 90 180 6B 100 202 6B 100 202 6B 110 202 6B 110 202 6F 110 202 7 ODP - 2 - 6 4 090 - 3 K F 4 # 2-MN 2-MN 132 240 7 ODP - 2 - 7 4 110 - 3 K F 4 # 2-MN 160 302 7 ODP - 2 - 7 4 110 - 3 K F 4 # N-MN 160 302 7 ODP - 2 - 7 4 132 - 3 K F 4 # N-MN N-MN 160 302 7 ODP - 2 - 7 4 160 - 3 K F 4 # N-MN N-MN N-MN 250 480 8 ODP - 2 - 8 4 250 - 3 K # 4 # 2-MN N-MN 3 Phase Input 185 255 7 ODP - 2 - 7 5 185 - 3 K 0 4 # ODP - 2 - 7 5 185 - 3 K 0 4 # ODP - 2 - 7 5 185 - 3 K 0 4 # N-MN N-MN ODP - 2 - 7 5 185 - 3 K 0 4 # N-MN N-MN ODP - 2 - 7 5 185 - 3 K 0 4 # N-MN N-MN N-MN ODP - 2 - 7 5 185 - 3 K 0 4 # N-MN N-MN N-MN N-MN N-MN N-MN N-MN N-M		75	150	6						N-MN				
90 180 6B 110 202 6B 110 202 7 ODP - 2 - 6 4 100 - 3 K F 4 # 2-MN 132 240 7 160 302 7 ODP - 2 - 7 4 110 - 3 K F 4 # N-MN 160 302 7 ODP - 2 - 7 4 160 - 3 K F 4 # N-MN N-MN 160 302 7 ODP - 2 - 7 4 160 - 3 K F 4 # N-MN N-MN 160 302 7 ODP - 2 - 7 4 160 - 3 K F 4 # N-MN N-MN 160 302 7 ODP - 2 - 8 4 250 - 3 K # 4 # N-MN N-MN 172 185 7 ODP - 2 - 7 5 132 - 3 K 0 4 # N-MN N-MN 185 255 7 ODP - 2 - 7 5 185 - 3 K 0 4 # N-MN ODP - 2 - 7 5 185 - 3 K 0 4 # N-MN N-MN N-MN N-MN N-MN 172 185 7 ODP - 2 - 7 5 185 - 3 K 0 4 # N-MN N-MN N-MN N-MN N-MN N-MN N-MN N-M		75	150	6B		ODP - 2 - 6 4 07	75 - 3 K F	4 #	2-MN					
110 202 68 ODP - 2 - 6 4 110 - 3 K F 4 # ODP - 2 - 7 4 130 - 3 K F 4 # N-MN		90	180	6		ODP - 2 - 6 4 09	90 - 3 K F	4 #		N-MN				
110 202 7 132 240 7 132 240 7 160 302 7 200 370 8 250 480 8 250 480 8 250 248 250 258 255 258 255 258 255 258		_		_										
132 240 7 160 302 7 200 7 8 172 - 7 4 132 - 3 K F 4 # 1 N-MN N-MN N-MN N-MN N-MN N-MN N-MN N-				_					2-MN					
160 302 7 ODP - 2 - 7 4 60 - 3 K F 4 # ODP - 2 - 7 4 60 - 3 K F 4 # ODP - 2 - 8 4 200 3 K # 4 # 2-MN N-MN		_		_										
200 370 8 ODP - 2 - 8 4 200 - 3 K # 4 # 2-MN N-MN 250 480 8 ODP - 2 - 8 4 250 - 3 K # 4 # 2-MN N-MN 132 185 7 ODP - 2 - 7 5 132 - 3 K 0 4 # N-MN 150 205 7 ODP - 2 - 7 5 150 - 3 K 0 4 # N-MN 2MN N-MN 185 255 7 ODP - 2 - 7 5 185 - 3 K 0 4 # N-MN ODP - 2 - 7 5 200 - 3 K 0 4 # N-MN ODP - 2 - 7 5 200 - 3 K 0 4 # N-MN ODP - 2 - 7 5 200 - 3 K 0 4 # N-MN ODP - 2 - 2 6 150 - 3 K 0 4 # N-MN ODP - 2 - 2 6 400 - 3 K 0 4 # N-MN The state of the s														
250 480 8 ODP - 2 - 8 4 250 - 3 K # 4 # 2-MN N-MN 132 185 7				_					2-MN					
132 185 7 150 205 7 200 275 7 DOP - 2 - 7 5 132 - 3 K 0 4 # ODP - 2 - 7 5 185 - 3 K 0 4 # ODP - 2 - 7 5 185 - 3 K 0 4 # ODP - 2 - 7 5 185 - 3 K 0 4 # ODP - 2 - 7 5 185 - 3 K 0 4 # ODP - 2 - 7 5 185 - 3 K 0 4 # ODP - 2 - 7 5 185 - 3 K 0 4 # ODP - 2 - 7 5 185 - 3 K 0 4 # ODP - 2 - 7 5 185 - 3 K 0 4 # ODP - 2 - 2 6 150 - 3 K 0 4 # ODP - 2 - 2 6 150 - 3 K 0 4 # ODP - 2 - 2 6 150 - 3 K 0 4 # ODP - 2 - 2 6 150 - 3 K 0 4 # ODP - 2 - 2 6 150 - 3 K 0 4 # ODP - 2 - 2 6 150 - 3 K 0 4 # ODP - 2 - 2 6 150 - 3 K 0 4 # ODP - 2 - 2 6 150 - 3 K 0 4 # ODP - 2 - 2 6 150 - 3 K 0 4 # ODP - 2 - 2 6 150 - 3 K 0 4 # ODP - 2 - 2 6 150 - 3 K 0 4 # ODP - 2 - 2 6 150 - 3 K 0 4 # ODP - 2 - 2 6 150 - 3 K 0 4 # ODP - 2 - 3 6 150 - 3 K 0 4 # ODP - 2 - 3 6 150 - 3 K 0 4 # ODP - 2 - 3 6 150 - 3 K 0 4 # ODP - 2 - 3 6 150 - 3 K 0 4 # ODP - 2 - 4 6 150 - 3 K 0 4 # ODP - 2 - 4 6 150 - 3 K 0 4 # ODP - 2 - 4 6 185 - 3 K 0 4 # ODP - 2 - 4 6 150 - 3 K 0 4 # ODP - 2 - 4 6 150 - 3 K 0 4 # ODP - 2 - 4 6 150 - 3 K 0 4 # ODP - 2 - 4 6 150 - 3 K 0 4 # ODP - 2 - 4 6 150 - 3 K 0 4 # ODP - 2 - 4 6 150 - 3 K 0 4 # ODP - 2 - 5 6 370 - 3 K 0 4 # ODP - 2 - 6 6 055 - 3 K 0 4 # ODP -		_												
A80-525V±10% 3 Phase Input 150 205 7 200 275 7 200 275 7 200 275 7 200 275 7 200 275 7 200 275 7 200 275 7 200 275 7 200 275 7 200 275 7 200 275 200 3 K 0 4 4				_	F									
3 Phase Input 185 255 7 ODP - 2 - 7 5 185 - 3 K 0 4 # ODP - 2 - 7 5 200 - 3 K 0 4 # ODP - 2 - 7 5 200 - 3 K 0 4 # ODP - 2 - 7 5 200 - 3 K 0 4 # ODP - 2 - 2 6 6 505 - 3 K 0 4 # ODP - 2 - 2 6 6 505 - 3 K 0 4 # ODP - 2 - 2 6 6 505 - 3 K 0 4 # ODP - 2 - 2 6 6 505 - 3 K 0 4 # ODP - 2 - 3 6 150 - 3 K 0 4 # ODP - 2 - 3 6 150 - 3 K 0 4 # ODP - 2 - 3 6 150 - 3 K 0 4 # ODP - 2 - 3 6 150 - 3 K 0 4 # ODP - 2 - 3 6 150 - 3 K 0 4 # ODP - 2 - 3 6 150 - 3 K 0 4 # ODP - 2 - 3 6 150 - 3 K 0 4 # ODP - 2 - 3 6 150 - 3 K 0 4 # ODP - 2 - 3 6 150 - 3 K 0 4 # ODP - 2 - 3 6 150 - 3 K 0 4 # ODP - 2 - 3 6 150 - 3 K 0 4 # ODP - 2 - 3 6 150 - 3 K 0 4 # ODP - 2 - 3 6 150 - 3 K 0 4 # ODP - 2 - 4 6 185 - 3 K 0 4 # ODP - 2 - 4 6 185 - 3 K 0 4 # ODP - 2 - 4 6 300 - 3 K 0 4 # ODP - 2 - 4 6 300 - 3 K 0 4 # ODP - 2 - 4 6 300 - 3 K 0 4 # ODP - 2 - 5 6 370 - 3 K 0 4 # ODP - 2 - 5 6 370 - 3 K 0 4 # ODP - 2 - 5 6 370 - 3 K 0 4 # ODP - 2 - 5 6 370 - 3 K 0 4 # ODP - 2 - 5 6 370 - 3 K 0 4 # ODP - 2 - 5 6 370 - 3 K 0 4 # ODP - 2 - 5 6 370 - 3 K 0 4 # ODP - 2 - 5 6 370 - 3 K 0 4 # ODP - 2 - 5 6 370 - 3 K 0 4 # ODP - 2 - 5 6 370 - 3 K 0 4 # ODP - 2 - 5 6 370 - 3 K 0 4 # ODP - 2 - 5 6 370 - 3 K 0 4 # ODP - 2 - 5 6 370 - 3 K 0 4 # ODP - 2 - 5 6 370 - 3 K 0 4 # ODP - 2 - 5 6 370 - 3 K 0 4 # ODP - 2 - 5 6 370 - 3 K 0 4 # ODP - 2 - 5 6 370 - 3 K 0 4 # ODP - 2 - 5 6 370 - 3 K 0 4 # ODP - 2 - 5 6 370 - 3 K 0 4 # ODP - 2 - 6 6 075 - 3 K 0 4	490 525V 109/													
200 275 7 ODP - 2 - 7 5 200 - 3 K 0 4 # N-MN 0.75 2.1 2 1.5 3.1 2 2.2 4.1 2 ODP - 2 - 2 6 6075 - 3 K 0 4 # 2-MN X-TN Y-TN A-MN B-MN 0.75 2.2 4.1 2 ODP - 2 - 2 6 600 - 3 K 0 4 # 2-MN X-TN Y-TN A-MN B-MN 0.75 9 2 ODP - 2 - 2 6 500 - 3 K 0 4 # 2-MN X-TN Y-TN A-MN B-MN 0.75 12 3 ODP - 2 - 2 6 500 - 3 K 0 4 # 2-MN X-TN Y-TN A-MN B-MN 0.75 12 3 ODP - 2 - 3 6 075 - 3 K 0 4 # 2-MN X-TN Y-TN A-MN B-MN 0.75 12 3 ODP - 2 - 3 6 075 - 3 K 0 4 # 2-MN X-TN Y-TN A-MN B-MN 0.75 10 3 ODP - 2 - 3 6 110 - 3 K 0 4 # 2-MN X-TN Y-TN A-MN B-MN 0.75 10 3 ODP - 2 - 4 6 150 - 3 K 0 4 # 2-MN X-TN Y-TN A-MN B-MN 0.75 10 5 6 ODP - 2 - 4 6 300 - 3 K 0 4 # 2-MN N-MN A-MN B-MN 0.75 10 5 6 ODP - 2 - 5 6 370 - 3 K 0 4 # 2-MN N-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 2-MN N-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 2-MN N-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 2-MN N-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 2-MN N-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 2-MN N-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5 6 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5 0 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5 0 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5 0 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5 0 ODP - 2 - 6 6 090 - 3 K 0 4 # 3-MN 0.75 10 5														
0.75 2.1 2 1.5 3.1 2 2.2 4.1 2 0DP - 2 - 2 6 075 - 3 K 0 4 # 2.MN X.TN Y.TN A.MN B.MN 2.2 4.1 2 0DP - 2 - 2 6 220 - 3 K 0 4 # 2.MN X.TN Y.TN A.MN B.MN 3.50 - 600V ± 10% 3 Phase Input 0.75 2.1 2 0DP - 2 - 3 6 150 - 3 K 0 4 # 2.MN X.TN Y.TN A.MN B.MN 3.7 54 5 0DP - 2 - 3 6 300 - 3 K 0 4 # 2.MN X.TN Y.TN A.MN B.MN 3.7 54 5 0DP - 2 - 3 6 300 - 3 K 0 4 # 2.MN X.TN Y.TN A.MN B.MN 3.7 54 5 0DP - 2 - 3 6 300 - 3 K 0 4 # 2.MN X.TN Y.TN A.MN B.MN 3.7 54 5 0DP - 2 - 4 6 300 - 3 K 0 4 # 2.MN X.TN Y.TN A.MN B.MN 3.7 54 5 0DP - 2 - 4 6 300 - 3 K 0 4 # 2.MN A.MN B.MN 3.7 54 5 0DP - 2 - 4 6 300 - 3 K 0 4 # 2.MN N.MN A.MN B.MN 3.7 54 5 0DP - 2 - 5 6 370 - 3 K 0 4 # 2.MN N.MN A.MN B.MN 3.7 54 5 0DP - 2 - 5 6 370 - 3 K 0 4 # 2.MN N.MN A.MN B.MN 3.7 54 5 0DP - 2 - 5 6 370 - 3 K 0 4 # 2.MN N.MN A.MN B.MN 3.7 54 5 0DP - 2 - 5 6 370 - 3 K 0 4 # 2.MN N.MN 3.7 54 5 0DP - 2 - 5 6 370 - 3 K 0 4 # 2.MN N.MN 3.7 54 5 0DP - 2 - 5 6 370 - 3 K 0 4 # 2.MN N.MN 3.7 54 5 0DP - 2 - 5 6 370 - 3 K 0 4 # 2.MN N.MN 3.7 54 5 0DP - 2 - 6 6 055 - 3 K 0 4 # 2.MN N.MN 3.7 54 5 0DP - 2 - 6 6 055 - 3 K 0 4 # 2.MN N.MN 3.7 54 5 0DP - 2 - 6 6 055 - 3 K 0 4 # 2.MN N.MN 3.7 54 5 0DP - 2 - 6 6 055 - 3 K 0 4 # 2.MN N.MN 3.7 N.MN 3.7 54 5 0DP - 2 - 6 6 055 - 3 K 0 4 # 2.MN N.MN 3.7 N.MN	P. C													
1.5 3.1 2 2.2 4.1 2 ODP - 2 - 2 6 150 - 3 K 0 4 # 2.MN									2 445 1		VTN	VTNI	A 1451	D 1411
2.2 4.1 2 ODP - 2 - 2 6 220 - 3 K 0 4 # 2-MN X-TN Y-TN A-MN B-MN ODP - 2 - 2 6 500 - 3 K 0 4 # 2-MN X-TN Y-TN A-MN B-MN B-MN B-MN A-MN B-MN B-MN B-MN B-MN B-MN B-MN B-MN B														
4 6.5 2 ODP - 2 - 2 6 400 - 3 K 0 4 # 2-MN X-TN Y-TN A-MN B-MN B-MN D-7.5 12 3 ODP - 2 - 2 6 550 - 3 K 0 4 # 2-MN X-TN Y-TN A-MN B-MN B-MN D-7.5 12 3 ODP - 2 - 3 6 110 - 3 K 0 4 # 2-MN X-TN Y-TN A-MN B-MN B-MN D-7.5 15 22 3 ODP - 2 - 3 6 150 - 3 K 0 4 # 2-MN A-MN B-MN B-MN B-MN B-MN B-MN D-7.5 15 22 4 ODP - 2 - 4 6 150 - 3 K 0 4 # 2-MN A-MN B-MN B-MN D-7.5 15 22 34 4 ODP - 2 - 4 6 150 - 3 K 0 4 # 2-MN N-MN A-MN B-MN B-MN D-7.5 15 5 78 6 ODP - 2 - 5 6 450 - 3 K 0 4 # 2-MN N-MN A-MN B-MN B-MN D-7.5 10.5 6 ODP - 2 - 6 6 055 - 3 K 0 4 # 2-MN N-MN A-MN B-MN D-7.5 10.5 6 ODP - 2 - 6 6 055 - 3 K 0 4 # 2-MN N-MN N-MN D-7.5 10.5 6 ODP - 2 - 6 6 055 - 3 K 0 4 # 2-MN N-MN D-7.5 10.5 6 ODP - 2 - 6 6 055 - 3 K 0 4 # 2-MN N-MN D-7.5 10.5 6 ODP - 2 - 6 6 055 - 3 K 0 4 # 2-MN N-MN D-7.5 10.5 6 ODP - 2 - 6 6 055 - 3 K 0 4 # 2-MN N-MN D-7.5 10.5 6 ODP - 2 - 6 6 055 - 3 K 0 4 # 2-MN N-MN D-7.5 10.5 6 ODP - 2 - 6 6 055 - 3 K 0 4 # 2-MN N-MN D-7.5 10.5 6 ODP - 2 - 6 6 055 - 3 K 0 4 # 2-MN N-MN D-7.5 10.5 6 ODP - 2 - 6 6 055 - 3 K 0 4 # 2-MN N-MN D-7.5 10.5 6 ODP - 2 - 6 6 055 - 3 K 0 4 # 2-MN N-MN D-7.5 10.5 6 ODP - 2 - 6 6 055 - 3 K 0 4 # 2-MN N-MN D-7.5 10.5 6 ODP - 2 - 6 6 055 - 3 K 0 4 # 2-MN N-MN D-7.5 10.5 6 ODP - 2 - 6 6 055 - 3 K 0 4 # 2-MN N-MN D-7.5 10.5 6 ODP - 2 - 6 6 055 - 3 K 0 4 # 2-MN N-MN D-7.5 10.5 6 ODP - 2 - 6 6 055 - 3 K 0 4 # 2-MN N-MN D-7.5 10.5 6 ODP - 2 - 6 6 055 - 3 K 0 4 # 2-MN N-MN D-7.5 10.5 6 ODP - 2 - 6 6 055 - 3 K 0 4 # 2-MN N-MN D-7.5 10.5 6 ODP - 2 - 6 6 055 - 3 K 0 4 # 2-MN N-MN D-7.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10								_						
5.5 9 2 ODP - 2 - 2 6 550 - 3 K 0 4 # 2-MN X-TN Y-TN A-MN B-MN ODP - 2 - 3 6 075 - 3 K 0 4 # 2-MN X-TN Y-TN A-MN B-MN B-MN 15 22 3 ODP - 2 - 3 6 110 - 3 K 0 4 # 2-MN A-MN B-MN B-MN B-MN B-MN B-MN B-MN B-MN B														
7.5 12 3 ODP - 2 - 3 6 075 - 3 K 0 4 # 2-MN X-TN Y-TN A-MN B-MN B-MN 15 22 3 ODP - 2 - 3 6 150 - 3 K 0 4 # 2-MN A-MN B-MN B-MN B-MN B-MN B-MN B-MN B-MN B														
15 22 3 ODP - 2 - 3 6 150 - 3 K 0 4 # 2-MN A-MN B-MN B-MN B-MN B-MN B-MN B-MN B-MN B								_						
500-600V±10% 3 Phase Input 15		11	17	3					2-MN				A-MN	B-MN
3 Phase Input 18.5 28 4 22 34 4 ODP - 2 - 4 6 185 - 3 K 0 4 # 2-MN N-MN A-MN B-MN 30 43 4 ODP - 2 - 4 6 220 - 3 K 0 4 # 2-MN N-MN A-MN B-MN B-MN 37 54 5 ODP - 2 - 5 6 370 - 3 K 0 4 # 2-MN N-MN A-MN B-MN B-MN A-MN B-								_	2-MN				A-MN	B-MN
22 34 4 ODP - 2 - 4 6 220 - 3 K 0 4 # 2-MN N-MN A-MN B-MN 30 43 4 ODP - 2 - 4 6 300 - 3 K 0 4 # 2-MN N-MN A-MN B-MN A-MN B-MN 37 54 5 ODP - 2 - 5 6 370 - 3 K 0 4 # 2-MN N-MN A-MN B-MN A-MN A-MN B-MN A-MN A-MN A-MN B-MN A-MN A-MN A-MN B-MN A-MN A-MN A-MN A-MN A-MN A-MN A-MN A								_						
30 43 4 ODP - 2 - 4 6 300 - 3 K 0 4 2-MN N-MN A-MN B-MN								_						
37 54 5 ODP - 2 - 5 6 370 - 3 K 0 4 # 2-MN N-MN 45 65 5 ODP - 2 - 5 6 450 - 3 K 0 4 # 2-MN N-MN 55 78 6 ODP - 2 - 6 6 055 - 3 K 0 4 # N-MN 75 105 6 ODP - 2 - 6 6 075 - 3 K 0 4 # N-MN 90 130 6 ODP - 2 - 6 6 090 - 3 K 0 4 # N-MN														
45 65 5 ODP - 2 - 5 6 450 - 3 K 0 4 # 2-MN N-MN 55 78 6 ODP - 2 - 6 6 055 - 3 K 0 4 # N-MN 75 105 6 ODP - 2 - 6 6 075 - 3 K 0 4 # N-MN 90 130 6 ODP - 2 - 6 6 090 - 3 K 0 4 # N-MN								_					A-MN	R-WIA
55 78 6 ODP - 2 - 6 6 055 - 3 K 0 4 # N-MN 75 105 6 ODP - 2 - 6 6 075 - 3 K 0 4 # N-MN 90 130 6 ODP - 2 - 6 6 090 - 3 K 0 4 # N-MN														
75 105 6 ODP - 2 - 6 6 075 - 3 K 0 4 # N-MN 90 130 6 ODP - 2 - 6 6 090 - 3 K 0 4 # N-MN								_	- 1711 A					
90 130 6 ODP - 2 - 6 6 090 - 3 K 0 4 # N-MN								_						
110 150 6 ODP - 2 - 6 6 110 - 3 K 0 4 # N-MN														
		110	150	6		ODP - 2 - 6 6 11	10 - 3 K <mark>0</mark>	4 #		N-MN				

Model Code Guide

EMC Filter

No Internal EMC Filter

Internal EMC Filter

High Performance EMC Filter

kW Models: Factory SettingsMotor Rated Frequency: 50Hz
Motor Rated Voltage: 30/400/575V

Drive Specification

200 - 240V ± 10% 380 - 480V ± 10% 500 - 600V ± 10% CANopen 125 – 1000kbps Fieldbus Input Ratings Supply Voltage Built-in 9.6 - 115.2 kbps select 8N1, 8N2, 8E1, 8O1 Modbus RTU Supply Frequency PROFIBUS DP (DPV1) PROFINET IO DeviceNet EtherNet/IP EtherCAT Modbus TCP Displacement Power Factor Phase Imbalance 3% Maximum allowed Inrush Current < rated current 24 Volt DC, 100mA, Short Circuit Protected 10 Volt DC, 10mA for Potentiometer I/O Specification Power Supply 120 per hour maximum, evenly spaced 5 Total as standard (Optional additional 3) 3 Digital (Optional additional 3) 2 Analog / Digital Selectable 5 Digital With CAN 10 Option 230V 1Ph. Input: 0.75–2 2kW (1–3HP) 230V 3Ph. Input: 0.75–75kW (1–100HP) 400V 3Ph. Input: 0.75–250kW 460V 3Ph. Input: 1–400HP 575V 3Ph. Input: 0.75–110kW (1–150HP) Output Ratings Programmable Inputs Output Power Opto - Isolated 8 – 30 Volt DC, internal or external supply Digital Inputs Overload Capacity 150% for 60 seconds Response time < 4ms Resolution: 12 bits Output Frequency Response time: < 4ms Accuracy: < 1% full scale Parameter adjustable scaling and offset 0 - 500Hz, 0.1Hz resolution Analog Inputs Acceleration Time 0.01 - 600 seconds $\begin{array}{l} \text{Motor PTC / Thermistor Input} \\ \text{Trip Level}: 3k\Omega \end{array}$ PTC Input Deceleration 0.01 - 600 seconds Time 7 Total (Optional additional 3) 2 Analog / Digital 2 Relays (Optional additional 3) 3 With CAN IO Option Module Program Outputs Typical Efficiency > 98% Storage: -40 to 60°C Operating: -10 to 50°C Up to 1000m ASL without derating Ambient Maximum Voltage: 250 VAC, 30 VDC Switching Current Capacity: 5A AC , 5A DC Temperature Relay Outputs 0 to 10 Volt 0 to 20mA 4 to 20mA Altitude Up to 2000m maximum UL Appro Up to 4000m maximum (non UL) Analog Outputs Humidity 95% Max. non condensina Conforms to IEC 60068-2-6 Internal PID Controller Application Features Sinusoidal Vibration 10 - 57Hz @ 0.075mm Pk 57 - 150Hz @ 1g Pk Multi Setpoint Select Vibration PID Control Standby / Sleep Mode Boost Function Dedicated Hoist Mode Motor Holding Brake Pre-Torque & Control Over Limit Protection IP20, IP55, IP66 Hoist Mode Fault Memory Built-in keypad as standard Maintenance & Diagnostics Last 4 Trips stored with time stamp Keypad Optional remote mountable keypad Logging of data prior to trip for diagnostic Display Built-in multi language text display purposes: Output Current Drive Temperature DC Bus Voltage Plus more in Optitools OptiTools Studio Data Logging V/F Voltage Vector Energy Optimised V/F 3GV Sensorless Vector Speed Control 3GV Sensorless Vector Torque Control Closed Loop (Encoder) Speed Control Closed Loop (Encoder) Torque Control PM Vector Control BLDC Control Synchronous Reluctance Control Specification Maintenance Indicator with user adjustable Maintenance maintenance interval Onboard service life monitoring Indicator Method Hours Run Meter Resettable & Non Resettable kWh meters Cooling Fan Run Time Monitoring PWM Frequency 4-32kHz Effective Low Voltage Directive Ramp to Stop: User Adjustable 0.01–600 secs Coast to Stop Stopping Mode 2014/30/EU EMC Directive Motor Flux Braking Built-in Braking Transistor Additional Braking UL, cUL, EAC, RCM Single point, user adjustable Skip Frequency DNV Type Approval 0 to 10 Volts 10 to 0 Volts -10 to +10 Volts 0 to 20mA 20 to 0mA Conformal Coated PCBs. Suitable for use in the following environments: IP20: 3C2, 3S2 IP55 & IP66: 3C3, 3S3 Conditions Signa 4 to 20mA 20 to 4mA Motorised Potentiometer (Keypad & Terminal) Modbus RTU CANopen

Connection Diagram

					Function	Default Setting
		0	1 +24V	1	24 Volt DC Output, 10	00mA max / 24 Volt DC Input
+24Vdc		0	2 DI 1	1	Digital Input 1	Drive Enable
		0	3 DI 2	1	Digital Input 2	Forward/Reverse Select
Optional External	— •	0	4 DI3	1	Digital Input 3	Preset Speed 1 Select
Power Supply	اہے۔	0	5 +10V	1	+10 Volt Power Supply	y 5mA
Juppiy	├──	0	6 DI 4/AI 1		Analog Input 1	Speed Reference 0-10 Volt
0Vdc	닏—	0	7 0V		0 Volt	
UVac	$\Box \Box$	Ø	8 AO1		Analog Output 1	Motor Speed
l ⊢	↑ ▼ ──	Ø	9 0V		0 Volt	
	X ••	Ø	10 DI 5/AI 2	2	Analog Input 2	
	<u> </u>	0	11 AO2		Analog Output 2	Motor Current
	4	0	12 STO +		Safe Torque Off Input	
_		0	13 STO -		Safe Torque Off Input	
		0	14 RL1-C 15 RL1-NO 16 RL1-NC		Output Relay 1	Drive Healthy / Fault
		0	17 RL2-A 18 RL2-B		Output Relay 2	Drive Running

Digital

	Size
mm	Height
mm	Width
mm	Depth
kg	Weight

IP20
2
221
110
185
1.8

IP20					
2					
221					
110					
185					
1.8					

1	
50	
40	
71	
.5	

1280 1334 330 444 358 423 TBC 89

OPTIDRIVE™ CP2

+44 (0)1938 556868

Invertek Drives Ltd is dedicated to the design, manufacture and marketing of electronic variable speed drives The state of the art UK headquarters houses specialist facilities for research & development, manufacturing and global marketing. The company pledges to implement and operate the ISO 14001 Environmental Management System to enhance environmental performance.

All company operations are accredited to the exacting customer focused ISO 9001:2008 quality standard. The company's products are sold globally in over 80 different countries. Invertek Drives' unique and innovative drives are designed for ease of use and meet with recognised international design standards.

Global Drive Solutions

Invertek Drives operate at the heart of automated systems around the world

Crane Control Demanding application at South African mine

Machine Tool OEM UK machine tool supplier specifies Optidrive

Film Manufacturing Optimum tension control in Australia

Food Processing Precision conveyor control in Spain

Amusement Parks Reliable control of difficult loads in Spain

Optidrive P2 User Guide

Scan to download or visit the Invertek Drives website

www.invertekdrives.com/variable-frequency-drives/optidrive-p2

INVERTEK DRIVES LIMITED UK Headquarters

Offa's Dyke Business Park Welshpool, Powys, UK SY21 BJF

Tel: +44 (0)1938 556868 Fax: +44 (0)1938 556869 Email: sales@invertekdrives.com

Optidrive Overview

Variable Frequency Drives

Single Phase Motor Control

for Permanent Split Capacitor & Shaded-Pole Motors

One of the only manufacturers to produce a drive dedicated for single phase motors.

Special Boost Phase

To ensure reliable starting of single phase motors, the drive initially ramps the motor voltage up to rated voltage whilst maintaining a fixed starting frequency, before reducing the frequency and voltage to the desired operating point.

Modbus CANopen

0.37kW-1.1kW/0.5HP-1.5HP 110-240V Single Phase Input

Single Phase Input / Output

Optidrive E3 for Single Phase Motors uses a revolutionary motor control strategy to achieve reliable intelligent starting of single phase motors.

- Provides the same features as the 3 phase Optidrive E3
- The ideal energy saving solution where high starting torque is not required - typically including fans, blowers, centrifugal pumps, fume extractors and air flow controllers

Key Features

- √ 110-115V and 200-240V models
- Small mechanical envelope
- Rugged industrial operation
- Fast setup, and simple operation with 14 basic parameters
- Unique motor control strategy optimised for single phase motors
- ✓ Motor current and rpm indication
- Built in PI control, EMC filter (C1) & brake chopper
- Application macros for industrial, fan and pump operation
- Bluetooth connectivity

IP20

IP66/NEMA 4X

Up to 37kW/50HP

Up to 22kW/30HP

General Purpose Drive

Focused on ease of use, **Optidrive E3** provides unrivalled simplicity of installation, connection and commissioning, allowing the user to benefit from precise motor control and energy savings within minutes.

Application Macros

Industrial Mode

Pump Mode

Fan Mode

Easy to Use

Invertek's core philosophy is to ensure all products are highly advanced yet easy to use. Combining a simple parameter set with carefully chosen base values ensures you spend less time commissioning and trouble shooting and more time operating.

IM, PM, BLDC, SynRM Motor Control

E3 can operate with standard squirrel cage induction motors, higher efficiency permanent magnet AC motors or Brushless DC motors. Synchronous reluctance motors are also supported. This gives a single drive solution that can be easily utilised whatever the motor type and allows you to immediately take advantage of high efficiency motors.

Suitable for a Wide Range of Applications

From simple fans and pumps, through to compressors and conveyers, the Optidrive E3 handles a wide range of applications with fast installation and simple programming.

Cabinet Mount or Enclosed

Available with either IP20 cabinet mount enclosure type or wall/machine mountable IP66/NEMA 4X enclosure.

IP66/NEMA 4X

Being fully dust protected, suitable for washdown and built with tough polycarbonate plastics specifically chosen to withstand degradation by ultra violet (UV), and low temperatures, making it suitable for indoor or outdoor installations even in harsh environments. Two models are available: simple enclosed drives or the "switched" version with a built in control switch, potentiometer and local mains disconnect /isolator.

Key Features

- ✓ Up to 480VAC
- ✓ Internal EMC Filter
- ✓ Built In PI Control
- ✓ Modbus RTU onboard
- CAN onboard
- ✓ Optional Ethernet/IP
- ✓ Optional Modbus TCP
- ✓ Dual Analog Inputs
- ✓ Built in Brake Transistor
- ✓ Up to 122°F / 50°C Ambient

Modbus RTU

on-board as standard

Compact, robust and reliable general purpose drive

Switched models

Simply wire up the drive, turn the inbuilt potentiometer and the motor will start running – allowing immediate energy savings.

Saving energy cannot be easier than this!

Same dimensions as a non-switched model.

0.37kW-37kW/0.5HP-50HP **110-480V** Single & 3 Phase Input

www.invertekdrives.com/optidrive-e3

IP20

IP55/NEMA 12

IP66/NEMA 4X

Up to 250kW/400HP

Up to 250kW/400HP

Up to 30kW/40HP

Powerful Performance

World leading control for the latest generation of permanent magnet and standard induction motors

The Optidrive P2 offers the perfect combination of high performance together with ease of use to allow even the most demanding applications to be tackled easily.

STO as Standard

Optidrive P2 features a SIL2 certified Safe Torque Off function allowing the drive to be integrated as part of a safety system.

Advanced Fieldbus Capability

With Modbus RTU and CAN as standard plus the option of Ethernet/IP, Modbus TCP, Profibus DP, DeviceNet, Profinet or EtherCat, the Optidrive P2 offers the capability to connect with a wide range of fieldbus networks.

High Performance Motor Control for demanding applications

Optidrive P2 provides up to 200% motor torque from zero speed ensuring even the most difficult loads can be started. Additionally, open loop operation with ACPM and BLDC motors is also possible for optimum energy efficiency.

Function Block Programming for unique functions and customisation

An internal function block programming capability allows the drive to be uniquely customised to each application and can save cost by removing the need for additional external equipment such as simple PLC's or

Additional Features:

- ✓ Up to 600VAC
- ✓ Internal EMC Filter
- Built in Function Block programming capability
- Built In PID Control
- Modbus RTU onboard
- ✓ CANopen onboard
- Optional Ethernet/IP and other Fieldbus
- **Dual Analog Inputs**
- Built in Brake Transistor
- ✓ Hoist Mode for lifting application
- Up to 122°F / 50°C Ambient
- Common DC Bus
- Torque Control
- Heavy overload capacity

Integrated Keypad & Display

Pluggable Modules

Pluggable **Terminals**

Fieldbus Interfaces

Powerful, versatile and easy to use

DeviceNet*

0.75kW-250kW/1HP-400HP 200-600V Single & 3 Phase Input

www.invertekdrives.com/optidrive-p2

Modbus RTU

IP20

IP55/NEMA 12

IP66/NEMA 4X

Up to 250kW/400HP

Up to 250kW/400HP

Up to 30kW/40HP

Optidrive Eco provides efficient, reliable and quiet control of motors for HVAC and pumping applications.

Optidrive Eco Variable Frequency Drives

HVAC BUILDING SERVICES

Energy efficient fan & pump control

Optidrive Eco HVAC uses an innovative design to improve overall efficiency whilst minimising the harmonic distortion levels. All 3 phase input drives up to 90A (Size 5), utilise film capacitors in the DC link, providing exceptionally low harmonic current distortion and enhancing efficiency. Models exceeding 90A (Size 6-8) use traditional electrolytic capacitors and include DC chokes to mitigate harmonic distortion.

Optidrive Eco HVAC product range complies with the THC requirements of EN61000-3-12.

Typical iTHD values at full and part load

Reduced DC link capacitance significantly lowers the total harmonic distortion at full load, and has a much greater benefit at part load compared to a conventional DC choke or swinging choke. This results in reduced overall input current and reduced transformer heating effect.

Energy Efficient Air Handling

Power factor comparison

Instant Power Savings

The graph below shows a comparison between the efficiency of various methods which can be used to control the airflow produced by a fan.

From the data, it can be clearly seen that using methods such as dampers to restrict the airflow is much less efficient than controlling the speed of the fan using an Optidrive Eco HVAC.

000 600

Belt Break Detection

Optidrive Eco HVAC can provide immediate warning of broken belt between motor and fan. Due to its simple and flexible configuration the feature can also be used for any loss of load condition, such as broken coupling or other mechanical failure.

www.invertekdrives.com/hvac-building-services

PUMP CONTROL

Energy efficient pumping with OPTIFLOW

Blockage Detect/Clear

Optidrive Eco Pump can detect pump blockages and trigger a programmed cleaning cycle to automatically clear them, preventing downtime.

Pump Stir Cycle

Triggered by a settable period of inactivity, a configurable cleaning cycle can be run to clear sediment, ensuring the pump is ready to run when needed.

Key Features

- ✓ Energy Optimised Design
- Built in, simple PLC functionality
- ✓ Internal EMC filter
- ✓ Built in STO
- ✓ Built in PID controller
- ✓ Burst Pipe
 - Optiflow Multi-Pump: duty assist/ duty standby/jockey pump
- ✓ Dry run protection
- ✓ Multi-Pump cascade
- Blocked pump detection and clean.
- ✓ Pump stir
- ✓ Fire mode
 - Maintenance timer

OPTIDRIVE

Member of **Sumitomo** Drive Technologies

OptiTools Studio

Onboard PLC Programming for the Optidrive P2 and Eco ranges.

Powerful PC Software

Drive commissioning and parameter backup

- Real-time parameter editing
- Drive network communication
- Parameter upload, download and back-up storage
- Simple PLC function programming
- Real-time scope function and data logging
- Real-time data monitoring

Compatible with:

Windows XP Windows Vista Windows 7 Windows 8.1 Windows 10

Optistick Smart

Rapid Commissioning Tool

- Allows copying, backup and restore of drive parameters
- Provides Bluetooth interface to a PC running OptiTools Studio or the OptiTools Mobile app on a smartphone
- Onboard NFC (Near Field Communication) for rapid data transfer

OptiTools Mobile))

Smartphone App

OptiTools Mobile is an intuitive and easy-to-use Smartphone App which provides wireless configuration and monitoring of the Optidrive product range.

Application Reference Table

Application	E 3	P2	Eco
Compressor	✓	✓	✓
Fan	✓	✓	✓
Pump	~	~	✓
Conveyor	✓	✓	
Mixer	✓	✓	
Treadmill	✓	✓	
Blower	✓		✓
Extractor	✓		✓
Crane		✓	
Crusher		✓	
Extruder		✓	
Hoist		✓	
Winch		✓	
Winder		✓	

Sensorless Vector Control for all Motor Types

Precise and reliable control for IE3, IE4 & IE5 motors

INVERTEK DRIVES LIMITED UK Headquarters

Offa's Dyke Business Park Welshpool, Powys, UK SY21 8IF

Tel: +44 (0)1938 556868 +44 (0)1938 556869 Fax: **Email:** sales@invertekdrives.com

